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The paper studies convection in a horizontal layer of fluid rotating about avertical 
axis. The flows at large Rayleigh number R, with a single horizontal wave- 
number, are investigated using the mean-field approximation of Herring (1963). 
The flow that maximizes the heat flux is the same as that which gives an upper 
bound to the heat flux in the limit of infinite Prandtl number as calculated by the 
methods of Howard (1963) and Chan (1971, 1974). 

Rotation is not significant until the Taylor number T a  exceeds O(R). For 
O(R) < Ta < O[(RlogR)*], it can increase the rate of heat transfer, a pheno- 
menon noted experimentally by Rossby (1969). It does so because an Ekman 
layer is formed outside the thermal boundary layer, causing a thinning of the 
thermal layer. The maximum value of the Nusselt number N is approximately 
Od77&Tui% [log Tali. As the Taylor number increases further into the region 
O[(RlogR)%] < Tu < O(R)), the maximum value of N drops sharply, and 
becomes approximately O.O29B~Ta-~log (Rg/Ta). Hence, N now decreases with 
a further increase of Ta and eventually becomes O( 1) as Ta+ O(R8) and the layer 
becomes stable. 

1. Introduction 
The specific problem considered in this paper is that of the effect of rotation on 

convection between two rigid horizontal boundaries at large Rayleigh numbers. 
It is well known (Chandrasekhar 1961; Niiler & Bisshopp 1965) that a sufficiently 
large rate of rotation stabilizes the layer. However, the role of rotation cannot 
always be to inhibit convection, because Rossby (1 969) found experimentally 
that heat transfer is in fact enhanced in some intermediate range of rotation 
rates. Theoretical and numerical investigations of convection between two free 
boundaries by Veronis (1968), Van der Borght & Murphy (1973) and Chan (1974) 
failed to reproduce this phenomenon, though the numerical studies of convection 
between two rigid boundaries by Somerville (1971) and Somerville & Lipps 
(1973) did succeed in doing so. So, too, does the theoretical work of this paper. 

Thermal convection a t  Rayleigh numbers greatly in excess of the critical one 
is strongly nonlinear. No exact mathematical description of it is known, but two 
types of approximate methods have been used for its study. Either approxima- 
tions to the governing equations have been made, or else upper bounds to the 
heat flux have been calculated. There are several possible approaches to deriving 
approximate equations for the mean flow properties, though many of the 
resulting sets of equations are similar. One method is that of the mean-field 
approximation, in which interactions of fluctuating quantities are ignored, and 
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the only nonlinearity considered is that due to the interaction of vertical velocity 
and temperature with the mean vertical temperature field. It was used by Herring 
(1963) and several subsequent workers. Elder (1969) gave some physical justifica- 
tion for this “ruthless approximation” on the grounds that it models correctly 
the major mechanism of heat transfer outside the thermal sublayer, which is the 
ejection of blobs of sublayer fluid. Roberts (1966) used a similar set of equations 
for the mean flow, derived using the evolutionary criterion of Glansdorff & 
Prigogine (1964), which differ only in that a nonlinear convective acceleration 
term is included. This term vanishes, however, for certain geometrical patterns 
of the convection cells, such as two-dimensional rolls or rectangular cells, and 
also in the limit of infinite Prandtl number. Gough, Spiegel & Toomre (1975) 
derived similar equations by Galerkin methods. 

A philosophically different approach is that due to Howard (1963), who showed 
how an upper bound to the heat flux can be calculated. Certain of the governing 
equations are replaced by integrals formed from them, and the resulting equations 
and integrals form constraints. Since the constraints are less restrictive than the 
full set of governing equations, the maximum heat flux subject to them is 
a rigorous upper bound to  the actual heat flux. Upper bounds calculated in this 
manner by Howard and subsequent workers are not greatly in excess of 
measured heat fluxes, and offer some support to a hypothesis proposed by Malkus 
(1954), that the actual heat transferred is the maximum possible. In  principle, 
the maximizing flow and temperature field need bear no relation to the actual 
mean flow and temperature field but, as Howard remarks, “if the upper bound 
on heat transport is not hopelessly too large, it would require an unreasonable 
amount of self-restraint not to compare average properties of the maximizing 
fields with experimental observations. ” Such large amounts of self-restraint 
have not been evident, and indeed maximizing fields have been found to 
compare reasonably well with observations. 

The analysis of this paper uses the exact momentum equation in the limit of 
infinite Prandtl number, but approximates the heat equation in the manner of 
the mean-field approximation. The resulting problem is, in the absence of rota- 
tion, the same as that discussed by Roberts (1966, appendix by Stewartson), who 
obtained solutions of i t  for the limit of large Rayleigh number by boundary-layer 
methods. The particular instances of these solutions that maximize the heat 
flux are identical with those obtained by Chan (1971), who sought an upper 
bound to the heat flux subject to the exact momentum equation in the infinite 
Prandtl number limit, and an integrated form of the heat equation. Although 
this approach leads to equations that differ in part from those of the mean-field 
approximation, the differences are insignificant in the limit of large Rayleigh 
number. The present work, which includes the effects of rotation, is consequently 
closely related to that of Chan (1974), who extended his earlier analysis to the 
rotating case, and also that of Morgan (1973), who worked in terms of a mem- 
field approximation. Chan’s work is restricted to the case of free horizontal 
boundaries, whereas we consider rigid ones. This difference becomes insignificant 
at sufficiently high rotation rates, at which stage our results agree with his. Our 
results disagree with those of Morgan for reasons that will be explained later. 
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This work is restricted to  the case of a single horizontal wavenumber. It is 
known (Busse 1969, Chan 1971,1974) that multi-wavesolutions areoftenpossible, 
and allow greater heat fluxes than single-wave solutions. This issue is discussed 
in 0 4, and it is the intention of one of us (N. R.) to extend the present analysis 
to the multi-wave case. The basic equations used here are given in 3 2, and details 
of their solutions are in 3 3 and an appendix. 

2. Governing equations 
Following previous workers, we consider a horizontally infinite layer of fluid 

of depth d, bounded above and below. The upper and lower surfaces are main- 
tained at temperatures To and To + AT, respectively. The fluid is rotating about 
the vertical with angular velocity SL. It is convenient to use non-dimensional 
variables in which lengths, velocities, time, temperature and pressure are scaled 
respectively by d, K/d, da/K, AT and pvK/d2. Here K is the thermometric conduc- 
tivity, p is the mean density, and Y is the kinematic viscosity. Then, neglecting 
centrifugal force, and with the usual Boussinesq approximation that density 
variations are taken into account only in the buoyancy term, the basic equations 
are 

=-VP+RTk+V2u, 

v .u  = 0, 

aT" - + (u. V )  T* = V'T*. 
at 

Here u = (ZG, v, w) is the velocity vector; T* is the temperature excess over To; 
T is the deviation of T* from its horizontal average p*; and P is the deviation 
of the pressure from the hydrostatic value appropriate to F*. Also, k is a unit 
vector in the vertical direction; CT = v/K is the Prandtl number; E = v/dzQ is the 
Ekman number; R = agd3hT/~v is the Rayleigh number, a being the coefficient 
of volume expansion, and g the acceleration due to gravity. 

We shall discuss only steady solutions. For this case, a relation for the hori- 
zontal mean temperature can be obtained by averaging equation (2.3), and 
integrating with respect to z. It is 

d!F*ldz = Z - 1 - (wT). (2-4) 

Here and subsequently, bars denote horizontal averages, and angle brackets 
denote a further vertical averaging over the whole layer. It follows that the 
Nusselt number N ,  which measures the ratio of the actual heat transfer to that 
achieved purely by conduction, is 

N = 1 +(wT). (2.5) 

When the horizontal average of the heat equation (2.3) is subtracted from it, 

aF* a -  
dz az 

the result is 
V'T-W- = V . ( T u ) -  - (wT).  

The mean-field approximation involves the neglect of the right-hand side term, 
28-2 
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which has the form of a deviation of a bilinear fluctuating quantity from its 
horizontal mean. 

Having taken the limit (r+m in (2.1), the number of dependent variables in 
the problem can be reduced by two if we eliminate P, u and ZI, while introducing 
the vertical component of vorticity X = avpx - aulay. Also, following Chan, we 
shall rescale our remaining dependent variables so that 

) (2-7) 
8 = (wT)-iR*T, w = (wT)-~R-~w, 

6 = &(wT)-~R-~EX.  
0 = (wT)-~F* = T * / ( N -  l), 

The governing differential equations are now 

(2.8) 
Vo+V;O-Ta- ac = 0, 

ax 

aw 
V2C+ = 0, 

(2.10) 

(2.11) 

Here V; = a 2 p 2  + a2/ay2 and Ta = 4/E2. 

Ta is the Taylor number; and o and 0 are subject to the integral constraints 

(we) = 1. (2.12) 

Also, from integrating (2.11) with respect to z across the layer, 

(2.13) 

Lnstead of making the mean-field approximation, Chan seeks the maximum 
value of N subject to the constraints of (2.8) and (2.0), but with (2.11) replaced 
by the exact integral 

(N-I) < (1-08)' > = 1-  < IVB\' >/R. (2.14) 

This integral is obtained by an averaging of T times (2.3) over the whoIe layer. 
The Euler equations of the variational analysis lead to 

- 

( V G + T a c ) (  a22 ( N - ~ ) R  v20 

(2.15) 

instead of (2.11). Here h is a constant Lagrange multiplier that can be shown to 
lie in the range 12 f h < 1. Now, in all the cases considered in the next section, 
it can and has been verified, although the details are not given, that either the 
right-hand side terms of (2.15) are less significant than the left-hand side terms 
to the lowest order of approximation, or else they yield the identical approxima- 
tion 2 = I that would be obtained from the left-hand side. Because N is large, 
the A/(N - 1) and 1/(N - 1) terms are unimportant. Hence solutions that satisfy 
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(2.11) also satisfy (2.15) to a suflicient degree of approximation; and, when their 
heat flux is maximized with respect to possible choices of the wavenumber, 
they give upper bounds to the heat flux under the specified conditions. 

Nonlinearity is retained in (2.8)-(2.13) only through the horizontal average 
w e  term. Consequently the horizontal dependence of the unknown functions 
may be separated out by setting 

- 

0 = C 0n(z)  $n(z, Y), 0 = Z 0n(z) $a($, Y), C = Z 6 ( 2 )  #n(z, Y). (2.16) 
n n n 

The functions $n can be any solution of 

V",n(x, Y) = -a",n(X, Y), (2.17) 

for some horizontal wavenumber a,. Functions with different wavenumbers are 
naturally orthogonal, and can be chosen to be orthonormal so that 

(2.18) 

We consider only a single wavenumber in the analysis of 3 3. This analysis is 
necessary as a guide to the more general case, as well as being intereating in its 
own right. With our separation of variables, we now obtain ordinary differential 
equations that simply involve the single wavenumber a1 and the z-dependent 
parts el, o1 and 6 of the scaled temperature, vertical velocity and vorticity. The 
unit subscripts will now be omitted for simplicity, so that 

(g -a8)aw-a28 = Ta- d 5  
dz' 

dw 

(2.19) 

(2.20) 

(2.21) 

The 1/(N- 1) term on the right-hand side of (2.21) can normally be neglected 
because of the largeness of N .  This term is however important in an integrated 
sense in the constraint 

because 

This constraint is applied in all our subsequent solutions, either one or other 
form of the integral, as convenient, being evaluated for the various regions of the 
flow, to yield an expression for N .  In addition, there are the boundary conditions 
appropriate to rigid surfaces at z = 0 , l  that 

w = aqaz = e = = 0. (2.23) 

The subsequent analysis and solution of (2.19)-(2.22) suppose throughout that 
both the Rayleigh and Nusselt numbers are large. The magnitude of the Taylor 
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number varies, and different classes of solutions are found for different orders of 
magnitudes of it. In each case, the principal focus is on the unique solution that 
maximizes N ,  although other solutions are given. 

3. Singlswavenurnber flows between rigid boundaries 
3.1. No rotation: T a  = 0. 

The solution for this case is essentially that given by Roberts (1966, appendix by 
Stewartson) and Chan (1971). The wavenumber a is supposed to be large (which 
can be justified aposteriori), so that the convection cells are narrow. The solutions 
for w and 8 can be obtained by matching asymptotic approximations in three 
distinct regions. There is a uniform isothermal interior, in which (2.19) and 
(2.21) are satisfied by 

@e = we = 1, w = a-1, e = a. (3.1) 

Near each surface and adjacent to the interior are intermediate layers of thickness 
O(a-l), in which vertical derivatives are important in the viscous forces, and 
bring the vertical velocity to its zero boundary value. Defining an appropriate 
boundary-layer co-ordinate 6 = az for the lower of these layers (the upper layer 
is similar), the governing equations are 

- 

e (-& - 1 ) L  = ;, 

from (2.19), and again = 1, (3.3) 

from (2.21). Hence, w = W($)/a, where W is the solution of 

1 (g - 1 y  w = m, (3.4) 

for which W+ 1 as E+oo. Although no full analytical solution is available, the 
form of the solution as E -+ 0 can be found, having imposed the requirements that 

(3.5) 
W anddW/d[+O: 

There is one further layer, in which thermal conduction is significant in the heat 
equation and 0 is brought to its zero boundary value. Suppose that this inner 
layer is of thickness B < a-1, and defhe its appropriate co-ordinate as 7 = z/e. 
The requirement of matching on to the intermediate layer as 7 -+ 00 means that 

w N p [log g-114. 

w N as2~2{log[(ea)--1]}+ as y+w. (3.6) 

= €zac3 pOg [ (4-7}4 B = s2ae{iog [(€4-11)*. (3.7) 

d40/&?4 = 0, (3.8) 

Hence, appropriately scaled forms of w and 8 are 0 and 0, where 

Equation (2.19) therefore reduces to 

and the solution that matches on to the intermediate layer, and that also satisfies 
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the boundary conditions at 7 = 0, is 0 = q 2 .  Equation (2.21) predicts that the 
thickness of the inner thermal layer must satisfy 

kaaNRlog [(sa)-l] = 1, (3.9) 

and that i? must be found as the solution of 

dG/d72 = (00- 1) D = (?@- 1) q 2  (3.10) 

for which 8 = 0 at q = 0 and i ? - t ~ - ~  as 7300. Specifically, 

(3.11) 

Finally, the integral constraint (2.22) is needed for obtaining a scaling of the 
solution. Evaluating the rightmost expression, the contribution from the interior 
dominates that from the intermediate layers and is a4. Adding the contribution 
from the two inner thermal layers, we obtain to the lowest order of approximation 

2 1  
@a2 

R N a4+ -(log [(ea)-l]}-l, 
(3.12) 

Equations (3.9) and (3.12) can be solved for 8 and N in terms of a and R, to give 

E. N ( 101)) [(Baa - a6) log ( Rcc-~ - a)]-&, (3.13) 

N N (T) l -a4 /R  2 [ j l o g ( R a - a -  Ra2 
(3.14) 

Then, if N is maximized with respect to a, the maximum value is 

attained when a = (R/13)&. (3.15) 

This result is identical to Chan (1971, (63)), while (3.14) is in agreement with 
Roberts (1966, appendix by Stewartson (A28)) as modified for large a = a by 
the sentences that follow, and with the correction of an obvious misprint. Note 
that the lowest-order solution for w is sufficient for calculating N, and that it is 
not necessary to follow Stewartson and Morgan in calculating an improved 
approximation. 

Although the solution for 6 is uncoupled from that for B and w, i t  is of interest 
because it becomes coupled when Ta > 0 and the vertical component of vorticity 
then plays an important role. We have 5 = 0 in the interior. In the intermediate 
layer, g must be the solution of 

(3.16) 
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such that f[+ 0 as 6 +- 00 and f = 0 at E = 0. Hence, 

As E+O,  the two terms give a leading contribution, after an integration by 
parts, 

The second component here is a particular integral, needed to provide the right- 
hand side of (3.16). However, the Gsst term is clearly the more significant as 
E-. 0, and gives the form of 6 in the thermal layer, in which the appropriate 
approximation to (2.20) is d2C/dq2 = 0. 

3.2. Rotational eflects unimportant: T a  < O(R) 
Rotational effects do not become significant immediately T a  becomes non-zero; 
but they can initially be regarded as small perturbations to the previous solution. 
Our previous solution for < shows that the right-hand side of (2.19) first becomes 
significant in the intermediate layer when a-4Ta becomes O( 1). Hence rotational 
effects are unimportant, so long as T a  < O(R) for wavenumbers in the maxi- 
mizing range a = O(R4). 

3.3. Development of an Ekman layer: O(R) 4 T a  < O(R1og R)$ 
We can now expect the vorticity derivative in (2.19) to become significant near 
the boundary. Provided a is still large, there can still be a uniform isothermal 
interior with (2.19)-(2.21) approximated, as before, by 

and hence 

provided 

a4w = a20, a y  = 0, w 0  = 1, 
w = l /a,  0 = a ,  g =  0,  

O(Ta1) B O(R4) 2 a 9 O(Ta4). 

(3.19) 
(3.20) 
(3.21) 

The first part of this inequality is required by the integral constraint (2.22), 
while the second is necessary t o  keep the vorticity derivative in (2.19), which 
arises from the Coriolis term, small in the interior. However, as the boundary 
is approached and did2 increases in significance, we reach a stage at which 
Coriolis effects are as important as viscous effects from horizontal shears, so 
that the appropriate approximate forms of (2.19)-(2.21) are 

w e  = 1. dC dw 
a2c = x, a4w-a28 = TaL,  (3.22) 

The scaling w = W/a  is still appropriate, and the layer co-ordinate should be 6, 
where now = a3Ta-*dz. (A more precise definition of 6 is given below.) Hence 
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this new type of intermediate layer is thicker than the O(a-l) of the previous 
case. The governing equation for the new intermediate layer is therefore 

(3.23) 

and we require W + 1 as E -+a. We also require W + 0 as f 3 0, and the asymp- 
totic forms of Wand the other dependent variables as c+ 0 are readily found to be 

(3.24) 

According to Morgan, we come next to a 'thermal wind' layer of thickness r ,  
where 2a2r210gr-1 = 1, which is thinner by a mere logarithmic factor than the 
O(a-l) layer that we had previously. The reason for having this layer would 
appear to be that, as f-+ 0, the da[/dx2 term in (2.20) grows in relative importance, 
and can no longer be neglected when, in terms of the present analysis, z is 
O(r)  where r2a210g ( T ~ a - ~ r ~ )  is O(1). 

The best way of discussing matters appears to be in terms of a single equation 
for w, that is vaLid uniformly throughout all regions considered so far. We can 
approximate (2.19) by 

= wla - (cia) ( - 2 iogtp, e ag-y - 2 log <)-*,\ 

J 5 N Tau$( - 2 log [)*. 

(3.25) 

since again w e  = 1. Substituting with this equation for d25/dz2 in (2.20), and 
using (3.21), yields 

We obtain a single equation for w when we eliminate 5 between (3.25) and 
(3.26). In  terms of the scaled variables W* = Tah-lo,  f*  = az, it is 

(3.27) 

where e* denotes the small quantity a4Ta-l. A first integral of (3.27) is 

1 
= (e* - 1) log (s* W*2) +e*( W*2- 1) + (F~ - 1). (3.28) 

The constant of integration is determined by the requirement that w + a - I  
(i.e. W* tends to the constant value €*-a as .$--fa). The previous layer is described 
by the scaling of (3.28), in which W* is O ( B * - ~ )  and d/d$* is O(s*g). Now the 
right-hand side of (3.28), which is zero at W* = s * d ,  is positive for all smaller 
values of W*, so that W* decreases steadily from the value (e*)-t for decreasing 
finite E*.  The next stage therefore occurs when W* is O( 1). The leading approxima- 
tion to (3.28) is now 

(3.29) 
aw* 

(1 + (W*)--2) = {log{[(~*)-'])* = Ta*C. 
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This equation is, in essence, a first integral of Morgan (1973, (3.20)),  his equation 
for the thermal-wind boundary layer. It also follows from (3.28) that, in this 
region (which is of thickness T) 

= Ta-4 [log (~*)-1]4. (3.30) 

We can now see why this thermal-wind boundary layer cannot be the next 
layer. If it were, the vorticity 5 would be so large that it could not be brought to 
its boundary value 5 = 0. If the layers closer to the wall are of total thickness 
6 < a, then (2.20) is approximately 

d2g dw 
dZ2 dz' 
-= - -  

whence g = KX- /:6JdZ 

for some constant of integration K. The KZ term cannot match on to (3.30), 
and the integral term is of magnitude 0(6w) ,  which is of lesser magnitude than 
(3.30),  since w is O(aTa-4). Even a layer of thickness a-1, which is greater than 
T, could not allow g to increase to the magnitude of (3.30).  Hence, some other 
type of layer must come into play next, either one that involves higher deriva- 
tives of w in (2.19),  or one that involves the second derivative of 6' in (2.21) so 
that we is no longer unity. It is readily seen that the former possibility happens 
first, and in an Ekman layer of thickness O(Ta-2). The Ekman layer is governed 
by the approximate equations 

a 2 6  d6J 
d$ 

= 0, Tafw + . / 2 -  = 0, $42  = Tab .  (3.31) 

(The temperature term from (2.19) is unimportant, as can be verified aposteriori. 
It is O(a2/c2Ta) relative to terms retained.) 

The general solution of (3.31) that does not grow exponentially as O - t c o  and 
that satisfies the boundary conditions p = w = dwldz = 0 at z = 4 = 0 is 

Taic = 2~-2cexp(-q5)cos+. (3.32) 

Here c is a constant of integration, that is fixed by the requirement of matching 
onto the appropriate solution of (3.23) as g + O .  It is now apparent that matching 
must occur at  the small finite value of E = go, where 

w = c42-2cexp(-95)cos(4-~7r), 

~ 4 ~ 4 2  = Eo( -2l0gg0)) ,  2 c T d  = ( -  210g&)*. (3.33) 

Hence, g o  = a/Tai J 2 ,  c = *Tad [log (2Tat/a2)]*. (3.34) 

Because of this, the definition of the variable 5, which was fixed earlier only to 
within an additive constant, can now be specified more completely, and related 
to z by 

(Note that the intermediate layer is a boundary layer, and not an internal layer. 
However, the origin of 5 does not quite coincide with the physical boundary.) 
Moreover, matching onto the Ekman layer occurs when w is 4 2 ,  which is larger 

.$ - Eo = E - a/Td J 2  = ZE~TCL-*. (3.35) 
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than O ( a T a 4 )  in the layer of thickness r suggested by Morgan. The present 
argument, therefore, is that the Ekman layer intervenes, and precludes the layer 
suggested by Morgan. It can be checked that the correct approximation to (2.21) 
in the Ekman layer is still w e  = 1, provided that 

(NR/Ta) log (2Ta*/a2) 1 .  (3.36) 

The Ekman layer is unable to bring the temperature term 8 to its boundary 
value of zero, and we must finally have a thinner thermal layer, in which con- 
duction is important, and the approximation wB = 1 breaks down. The appro- 
priate approximation to (2.21) is now 

(3 .37)  

If we use 6 < Ta-% to denote the thickness of this layer, and let 7 = 216 be an 
appropriate boundary-layer variable, then 

w N ~ $ 2 4 2  = ~ T a * 6 ~ 7 ~ / 2 / 2  and 6 w ~4267  

throughout this layer. The appropriate approximations to (2.19) and (2.20) are 
d4w/dy4 = 0 and d2#3q2 = 0, and 8 is O ( l / w ) .  So ,writing 

8 = , /28/(cS2Ta*), 

we get (3 .38)  

The choice of 13 such that 

(3.39) 
NRc2TaP NRPTai [ (22;4)] 

log - - - 
2 8 

l =  

therefore gives us the same equation as (3.10) of the non-rotating case, and hence 
the same solution (3 .11) .  This innermost thermal layer thus has the same basic 
structure as in the non-rotating case, though its thickness is altered. 

Finally, to complete our solution, we must evaluate the integral constraint 
(2.22).  The contributions from the interior and the intermediate layer and that 
from the thermal layer, which dominates that of t'he Ekman layer, give 

4J2Tat 4 r  +- log (Tala4) ~ ~ 6 ~ T a '  
R - a4+ (3 .40)  

Here 1 is the constant defined earlier (3.12),  and the calculation of the inter- 
mediate-layer contribution is given in the appendix. It is much smalIer than R 
in the parameter range under consideration, and so may be neglected. Then, 
using (3.34) and (3.39), we obtain 

(3.41) 
6 N 2l*[Ta*B( I -a4/R) log ( 4 T a / a 4 ) ] a ,  

N N aI-aR*Ta*( 1 -a4/R)8 [log (4Ta/a4)]* .  

It now appears that the heat flux is maximized by making a as small as possible. 
The analysis of this section has supposed so far that a 9 O(TaB); we must now 

consider the effect of smaller values of a. Therefore, define 

k = Tai las ,  (3.42) 

I 
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where k may be 0(1 )  or smaller. By the time k has decreased to 0(1), Coriolis 
effects are important in the interior, and what was previously an intermediate 
layer has expanded to fill the interior. The interior is described by (3.23),  or 
equivalently 

(3.43) 

and we need a solution for which W -+ 0 as x 3 0 and 1. Its asymptotic form for 
small z is 

I W - -  ( x  + zo) [ - 2 log (2 + ZO)]+, k 
I (3.44) 

where, as before, the small constant xo is needed for matching. We can again 
match onto the Ekman layer (3.32) provided 

zo = Ta&/(a2 , /2 ) ,  c = 4Ta-a [log (2a4/Ta*)]*. (3.45) 

Note the significant change in the log term of c in (3.45) from (3 .34) .  Provided 
zo is small, i.e. a O(Ta*), we can again match on to the Ekman layer, and the 
subsequent thermal layer as before, with the new value of c. A recalculation of 
the integral constraint (2.22) is needed now that the interior is not uniform. The 
discussion given in the appendix shows that the contribution from the non- 
uniform interior is O[Taf (log Tu)-1], so that it is insignificant compared with R 
for the parameter range under discussion. Hence the dominant contribution to 
the integral must be that from the thermal layer, and hence 

R N U/(c2a5Ta), N N 2 3 I - W R i T a * .  (3 .46)  

Consequently, N is now maximized by the largest possible value of c .  Expression 
(3.45) shows that c increases with a in the range O(Ta*) < a < O(Ta4). This, 
together with our previous result, shows that the maximum of c must occur 
when a is O(Taft) and k is O( 1). To find this maximum and the solution that gives 
the maximum heat flux, a more careful discussion of (3 .43)  is needed, that is 
valid for both large and small k. 

A n  exact first integral of (3 .43)  for the interior is obtained after multiplying 
through by d W/&: 

k2r;)2 = w2- wg-21og - . (9 (3 .47)  

Here Wo > 0, which comes in as a constant of integration, is the value of W at the 
central level of x = 8, where, by symmetry, dW/dz = 0. Now Wo must be the 
smaller of the two roots of the right-hand side of (3 .47) ,  which must be Iess than 
one. Then (dW/dz)2 has it simple zero at W = W,, and it is positive for smaller W,. 
The solution for W increases from the small value 0x42 at x = 0 (the outer edge 
of the Ekman layer) to its maximum Wo at x = 8, then decreases symmetrically 
back to the boundary value ac42 at x = I. Hence, 
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The vorticity g is known explicitly in terms of W via (3.22). Applying this at the 
edge of the interior where 5 = 2 c T a 4 ,  we obtain 

(3.49) 2cTai = [2a2c2 - Wt -log (2a2ca/ W$)]*. 

Equations (3.48) and (3.49) now implicitly relate the three unknown quantities 
a, Wo and c. They can be simplified, if we wish to find the value of a that maximizes 

(3.50) 
c, and therefore set a = BTai, 

where p is O(1). Now k and W, are O(l) ,  while ac is small and O[Ta-* (log Ta)!i]. 
Hence, as an approximation, we can replace the lower limit of integration in (3.48) 
by zero, to get 

+O(Ta-A), p = w/w,. (3.51) 

We can also neglect the small a2c2 term in (3.51), to obtain 

4caTa* +log (2c2TaB) = - W 2  0 + 1% ( W / P ” .  (3.52) 

Now, treating both ca and Wo as functions of p, we find by differentiation that, 
for c to be a maximum with respect to p, 

(3.53) 

Finally, differentiation of (3.51), and elimination of /3, gives us for W, 

A unique root for W, in the range 0 < W, < 1 can be found numerically. This gives 
Wo = 0.6857, /3 = 1.2898. The leading approximation to c can be found without 
reference to these numerical values. It is 

c = (2Taa)-1[& log T u ] ~ ,  (3.55) 

in agreement with the limits of both (3.34) and (3.45); and the maximum heat 
flux is given by 

N - $I*R*Ta*[+ log Ta]*, a = 1.2898Tai. (3.56) 

Note how weakly N depends on a in the range O(Rf) > a > O(Ta*) considered 
thus far. 

Although the maximizing value of a changes discontinuously once Ta exceeds 
R, and the structure of the solution is altered markedly, (3.56) for N has the same 
functional dependence on R as (3.15) when Ta-t O(R). An interesting qualitative 
feature is that the rotation acts to increase N over its non-rotating value for 
fixed and large values of R. 

Rossby observed this phenomenon in his experiments with water (Prandtl 
number6-8), but not in those with mercury (Prandtl number 0.2).  His determina- 
tion is that the maximum heat flux occurs at  a value of R proportional to Ta063, 

whereas the prediction of the present single-wavenumber theory is that the 
maximum should occur in the extreme case for our parameter range of R of order 
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(Ta)075 (log Tu)-l because, as we shall see in $3.4, the Nusselt number decreases 
sharply when T a  is increased beyond the confines of the present parameter 
range. The structure derived in this section ceases to be valid when 6 = O(Tad) ,  
i.e. when Ta = O[(RlogR)*], because by then the thickness of the thermal 
layer has so grown that it equals that of the Ekman layer. Similarly, approxima- 
tion (3.36) has ceased to be valid. 

The fact that the presence of a rotational constraint can cause an increased heat 
fluxis somewhat surprising, in view of the stabilizing role of rotation in the linear 
stability problem for BBnard convection. The mechanism by which the heat flux 
is increased depends critically on the Ekman layer that develops when Ta exceeds 
O(R).  Once the Ekman layer has formed, the thickness of the thermal layer, which 
varies as N-1 as in any strongly convective flow, becomes thinner than its 
thickness when rotation is ineffectual, and temperature gradients are corre- 
spondingly intensified. Also, the effect of Coriolis force and the Ekman layer is 
to make the scaled vertical velocity w larger than before. It is now 

O(R-gTa>% [log Ta]i26) 

in the thermal layer, rather than O(R* [logEli%), and O(Ta-4) in the interior, 
as opposed to O ( R 4 ) .  Although Rossby is correct in suggesting that the thickness 
of the Ekman and thermal boundary layers are comparable when the Nusselt 
number is maximum, there is no mechanism by which the rigid boundary con- 
ditions are relaxed, allowing the bulk of the fluid to act as though the boundaries 
were free. The Ekman layer that plays a crucial role in our structure is that 
appropriate to a rigid boundary, rather than the weaker one that would be 
present with a free boundary. Our work therefore supports Veronis (1968), who, 
failing to find any increase of N with T a  in his numerical studies of the free- 
boundary case, concluded that the phenomenon does depend essentially on the 
rigid-boundary conditions. 

To complete the discussion of this section, it should be noted that solutions 
of the equations are possible for values of a! still smaller than those considered 

(3.57) so far, for which 

The interior now becomes uniform because of the magnitude of k. Neither w 
nor W changes appreciably across the interior, so that w = Wo/a = constant; 
the derivative of is approximately constant, and 

O(Ta*) B a 9 O[(Ta/R)*]. 

= a3 (+ - z)/WoTa. 
The requirement of matching onto the Ekman layer (3 .32 )  fixes 

W, = 2-Pa2Ta-% and c = 2faTa-8. 

The integral constraint (2 .22)  now yields 

R N 2gTaP + 41/(c2a5Ta) , NRcaTa a6 = 2 , (3.58) 

the contributions arising from the interior and the thermal layer. (ac/Wo is now 
no longer small.) The contribution from the interior is negligible, hence, the 
Nusselt number is given by 

N N 2-%]-$a%R%Tah, (3.59) 
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so that N decreases with a through this range. Expression (3.59) also has the 
same functional dependence on Ta as (3.46) in the limit a-+O(Ta*). The lower 
limit in (3.57) is necessary for self-consistency of the solution, and for the Ekman 
layer to be thicker than the thermal layer. 

3.4. Thickening of the thermal layer: O[(Rlog R)*] < Ta < O(R*) 
With increasing Taylor number, the Ekman layer, which is needed for satisfying 
the dynamical boundary conditions, must eventually become the thinnest layer. 
Also, the thermal layer must eventually thicken as N decreases to zero with 
increasing Ta. Hence, we should now look for a structure in which the thermal 
layer matches onto the interior or the intermediate layer if there is one. The 
equations governing the interior and intermediate layer and the Ekman layer 
are as before, so that the problem essentially becomes that of determining the 
nature of the thermal layer. 

The only solutions that appear to be possible in the present parameter range 
are ones in which the thermal layer is suddenly much thicker than before, and 
thicker rather than thinner than O(a-1). The major reason for this change comes 
from the integral constraint (2.22), which now prevents w from becoming as 
small as it did previously before we match onto the boundary layers. Such small 
matching values of w give rise to Ta2 or Ta% (log Ta)-l terms in the evaluations 
(3.40) and (3.58) of the integral constraint, which predominate over R and cause 
negative heat fluxes! With a thermal layer thicker than O(a-I), we can pass from 
the interior or intermediate layer into a region in which w is O[a(NR)-*], and 
the heat equation (2.21) reduces to 

NRO 
ua+NRwa’ 

e =  

Supposing first that 
O(Tai%-) a O(Ra) > a & O(TaQ), 

(3.60) 

(3.61) 

we need to match a thermal layer of thickness 6 with scaled variable q = 216 on to 
the solution at the inner edge of the intermediate layer. Using solution (3.24) 
with = a3z/Ta*, the appropriate scaled dependent variables i3,8, pare defined by 

with 

The balance of (3.60) requires 

(3.62) 

(3.63) 
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Equations (2.19) and (2.20) simplify, to lowest order, to 
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(3.65) 

so that 3 = 1 ,  O = r ,  and 8=q/( l+qz) .  (3.66), (3.67) 

This solution for 8 naturally satisfies the required boundary condition on the 
temperature. The Ekman layer is needed to adjust the solution to satisfy the 
correct boundary conditions on o and 5. It will be given again by (3.32), and 
matching to the thermal layer will occur where 

(3.68) 

The value of q given by (3.68) must be small for self-consistency. 
The principal contributions to the integral constraint (2.22) come from the 

interior and from the thermal layers. The latter contribution is evaluated most 
simply, using the first of the integrals of (2.22),  as 

m 

N R  (1 - w8) dz = 2NR6 so &2 = TNRS. s (3.69) 

The contribution from the Ekmanlayer is smaller than this, because it is a thinner 

R - a4 + TRNG. (3.70) layer. Hence, 

(A more careful discussion of this evaluation is given in the appendix.) Using 
(3.64) for 8, and writing a: = yR2, we can solve for N ,  to obtain 

N -  ya( 1 +Ta - y4)2  R8 log(g+). (3 .71)  

This expression is maximized by the choice y = 5 4 .  At this maximum, we have 

The Nusselt number now decreases with increasing Taylor number. The region of 
validity of this solution is limited at  one extreme by the requirement of matching 
on to  an interior Ekman layer as per (3.68).  For Tut/a2S to  be small, it is necessary 
that 

At the other extreme, N is no longer large when O ( T a )  = O(R%). However, as is 
well known (Chandrasekhar 1961; Niiler & Bisshopp 1965), the fluid is stable for 
Ta 2 2R8/3v2,/3.  

The maximizing solution of this section is essentially equivalent to that given 
by Chan (1974) for the case of two free boundaries. Chan does not consider the 
matching to the interior Ekman layer, and therefore states a range of validity 
wider than that of (3.73) for his case. However, provided matching to a4 interior 
Ekman layer is possible, the whole structure of the solution is dominated by the 
heat equation, and is insensitive to the dynamical boundary conditions. Hence 
the distinction between free and rigid boundaries is lost. Chan’s stated solution 

O(Ta) O(RlogR)$. (3.73) 
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for N exceeds ours in (3.72) by a factor of 4, but this is simply due to his omission 
of the contribution to (lVOlz) from the horizontal derivatives in the thermal 
layer. It is also important to notice that, across the zone in which Ta increases 
through O[(R log R)*], the thickness of the thermal layer jumps discontinuously 
from O[Ta-a) to O[(Ta-i (logTo)*], and thereisasharpdropintheNusseltnumber 
from O(Ta4) to O[Td (log Ta)-B]. 

Again, for completeness, we should note that solutions with less than the 
maximum possible heat flux are possible for values of a smaller than those in the 
range (3.61). We can match onto the solution (3.44) with zo = 0, provided 

(3.74) 

The contribution of the thermal layer dominates the integral constraint (2.22); 
we obtain 1 - nNS: hence. 

(3.75) 

This type of solution is vaIid for 

O(Bi) % O(Ta4) a O[(Ta//R)*] 9 O(Ta+). (3.76) 

The lower limit arises from the requirement that N be large, so that solutions 
cannot be expected for any smaller values of a. Both the ranges (3.61) and (3.76) 
shrink to zero as stability is approached, and T a  tends to O(Bt), making 
a -+ O(Tai) ,  as is found in the linear stability theory. 

4. Discussion 
Single-wavenumber solutions to our approximate equations of thermal 

convection in the presence of rotation have now been found for all except certain 
transition regions of the R, T a  parameter space for large R. Although our 
solutions have not been definitively shown to be the only ones possible, no other 
successful possibilities were found amongst the many tried; and the comprehen- 
sive coverage of parameter space, together with the continuous link-up with the 
non-rotating case a t  one extreme and the results of linear stability theory at the 
other extreme, support the idea that we have found all the possible solutions. 

An important aspect of the maximizing solutions are the discontinuities that 
occur at the transitions between the different regions of the R, T a  parameter 
space. The maximizing wavenumber decreases sharply as T a  increases through 
O(R), though the functional dependence of N on R and T a  is unaltered. The 
boundary-layer structure is altered a t  this transition with the intermediate layer 
expanding to fill the interior, and with the addition of an Ekman layer, but the 
thermal layer is not greatly altered. As T a  increases though O[(RlogR)*], on 
the other hand, the maximizing wavenumber, which has been steadily increasing 
with T a  prior to the transition, has a further abrupt increase. The boundary-layer 
structure is also altered with an abrupt increase in thickness of the thermal layer, 
and there is a consequent decrease in N .  Although the abrupt tramitions were 
unexpected, there does not seem to be any good reason for doubting their 
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validity. Of course, none of the changes are necessarily discontinuous. There are 
presumably transition layers in R, Ta space, whose structure we have not 
investigated, through which the different regimes that we find can be linked. 

Some of the reasons for our solutions differing so markedly from those of 
Morgan are described in detail in 3 3.3. They involve in part the magnitude of the 
vorticity 6, and we consider that the way in which we have solved explicitly for g 
and o (rather than following others in cross-eliminating g between (2.19) and 
(2.20)) to be a significant feature of our analysis. If cis cross-eliminated, the rigid 
boundary condition 5 = 0 can be converted to the form 

But the problem that ensues is that, when this condition is used in conjunction 
with a boundary-layer analysis, it may have to be satisfied to more than lowest 
order if c is to be zero. For instance, the lowest approximation to (4.1) for an 
Ekman layer such as described by (3.31), $3.3, is d 5 ~ / d $ 5  = 0. This is indeed 
satisfied by rigid-boundary Ekman-layer solutions, but for the reason that 
dw/d$ = 0,  because dw/dz = 0 a t  the boundary and d5~/d$5+&€w/d$ = 0 
throughout the layer. The condition d5~/d$5 = 0 is not sufficient, however, to 
ensure that 6 = 0, but only that the larger term d2&lq52 = 0. We consider that 
Morgan's solutions are incorrect, in part because insufficient care has been taken 
of the vertical vorticity, and because boundary conditions for it have not been 
properly satisfied. 

As pointed out in 3 1, our present analysis is restricted to solutions with a single- 
wave structure in the horizontal. Our basic equations (2.8)-(2.11) allow solutions 
with combinations of waves in the horizontal. The importance of such solutions 
was first realized by Busse (1969), who showed that they allow an upper bound 
for N greater than that Howard had calculated assuming a single wave, although 
the single-wave upper bound is in excess of experimental observations. Chan 
(1971) also found multi-wave solutions with any integral number of waves. The 
solution with two waves gives a larger upper bound for N for values of R in 
excess of 0.89 x 1010. There is a lack of experimental data at such large Rayleigh 
numbers, and Chan's single-wave upper bound, our (3.15), is in excess of the 
available data. 

The essential validity of the boundary-layer methods used here and elsewhere 
has been tested and confirmed in the simpler problem of convection in a porous 
1ayerbyBusse & Joseph(l972)andGupta & Joseph(1973).Thelatterwork,which 
is based on equations similar to ones used here, shows that the upper bound to N ,  
found from an asymptotic analysis of a single-wavenumber solutions, is again 
in excess of available experimental data. Gupta & Joseph solve their equations 
numerically as well as asymptotically, and their numerically determined values 
for N are rather smaller than those obtained asymptotically. Actually, their 
numerical values for the upper bound of N are in striking agreement with 
observed heat fluxes up to R N 500, and also follow the two-wave upper bound 
when it exceeds the one-wave upper bound for R 3 221.5. But, here too, the 
single-wave solution still gives a reasonable approximation to N .  Hence, there is 
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Lower 
Ta upper bound Formula, used Observation 

100 10.98 (3-56) 8.8 

106 18.88 (3.56) 9.6 
107 13.35 (3.72) 7.0 

TABLE I. Observed values of N compared with the lesser of 
formulae (3.56) and (3.72) for R = lo6 

10’ 14.46 (3.56) 9.4 

considerable evidence that single-wave solutions are more effective than one has 
any reason to expect, despite the fact that they cannot model the plume structure 
that one expects for the convection cells. 

A theoretically significant aspect of Chan’s (1971) work is his obtaining the 
upper bound N = 0.152R) in the asymptotic limit of both R and the number of 
waves going to infinity. This bound, for which there is a well-known dimensional 
argument, exceeds that of the single-wave value (3.15). However, multi-wave 
solutions may well not be so effective in increasing N for large R in problems with 
rotation. Our present h d i n g  is that the maximum heat flux is obtained when the 
thermal and Ekman layers coincide. The thickness of an Ekman layer must be 
O(TaA), regardless of horizontal cell structure, and such an arrangement makes 
N - Tak. This limit is achieved in the present work as Ta tends to O[(Rlog R)*] 
from below, so that N N (R logR)#. Chan’s analysis of multi-wave solutions in the 
free-boundary case (for which he does not find it necessary to discuss the Ekman 
layers that are important in our work) finds that infinitely many modes are 
possible in the range O(R4) < Ta < O(R8) and N N R3/Ta2. Hence, the greatest 
value of N for this range occurs as Ta tends to O(H) from above, and is 

N N RB - Ta%. 

The Ekman layer is thinner than the thermal layer in this range, so that Chan’s 
free-boundary solution is probably valid also for the rigid-boundary case, as it is 
with a single wave in $3 .4 .  Hence, if our present ideas are correct, and no radically 
different boundary-layer structure is found for the multi-wave case, there will 
be no order-of-magnitude increase in N from O[(R log R))]. 
Our single-wave upper-bound formulae for N ,  (3.66) and (3.72), can be com- 

pared with Rossby’s observed values, as displayed in his figure 11. They are 
somewhat Iarger. Consider, for definiteness, the value R = lo6, which lies in the 
upper range of Rossby’s data. Rotation is clearly already affecting N by the 
time Ta = lo4 and the theoretical stability limit is achieved at 

Ta = 2R4/3+,/3 = 0439R) = 3.9 x 10‘. 

Note also the small numerical coefficient of Rt in the preceding formula. These 
two features suggest that the values of Ta appropriate to our different regimes 
are somewhat smaller than the crudest order-of-magnitude evaluations would 

29-2 
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suggest. For R = lo6, (3.56) gives the lower of the upper bounds for Ta < 6-3 x 106 
and (3.72) does so for larger values of Ta. For the values tabulated, the theoretical 
upper bound for N is always within a factor of two of the observed value. The 
numerical integrations of Somerville (1971) and Somerville & Lipps (1973) are at 
Rayleigh numbers in the range 1-2 x lo4, and Nusselt numbers in the range 2-3, 
which are too small for any comparison with our asymptotic theory to be worth 
while. 
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Appendix 
To a degree of approximation sufficient for the discussions of $3.3, when 

ac/W, is small, the integral relation (3.48) between Ic and W, may be written as 

It is readily seen that 1/2k increases steadily from zero to infinity as W, increases 
from 0 to 1. For small W,, we can ignore the p 2  - 1 term in the denominator, and 
evaluate the second form of the integral, using the substitution,% = exp ( - s2) to 
obtain 1]2k N W,(n/2)*. As W, -t 1, the integral becomes large, because it has anon- 
integrable singularity when W, = 1. To examine this limit in more detail, write 
W, = 1 - E ,  where s is small and positive. Also change the variable of integration to 
@ = 1 -p. Then approximately 

1 1 

z. = 1, [$2 - 2$ - 2(1+ 26) log (1 - @)I+' 
A lowest-order approximation is obtained by expanding the integral about 
@ = 0, where it is most significant, and retaining only the most important terms. 
This gives - 

1 + O( 1) = -log (s-1) + O(1). 
= 10 [4e@ + 2$2]* 4 2  

Now, throughout the interior and intermediate regions for which (3.43) is 
valid and O(d2/dz2) < O(a2), the contribution to the integral constraint (2.22) 
can be approximately evaluated as a2]dz/w2 or, using the vertical velocity as 
variable of integration, as before, 

Here W, represents the value of W at which we match to the adjacent boundary 
layer, so that W, = acJ2 for matching to the Ekman layer (3.32). We cannot 
replace the lower limit of integration of (A 4) by zero, because this would cause 
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the integral to diverge. Instead we see that, if W, is small, the contribution to the 
integral from the range of integration near the lower limit is more significant 
than that from the remainder of the range (except perhaps that near the upper 

2ka4 
w,[ - 2 log w,l*- 

limit for W, close to 1). It is 

With W, = acJ2 and c given by (3.34), this term is seen to be 

4 4 2  Taz [log (Tu/a4)]-l. 

For W, -+ I, the contribution from the range of integration near W, = 1 becomes 
large, as it does for the integral (A I). Its contribution can be estimated in the 
same manner. It is 

using (A 3). The expression in (3.40) is the sum of contributions from (A 6) and 
(A 5). The former is clearly the contribution from the interior, and the latter is 
that from the intermediate layer, in which w decreases sharply. 

For the estimation of the integral constraint used in $3.4, (A4) should not 
be used, in view of the fact that 

and 

aNRW 
a4 + NR W2 

8 =  

are now valid uniformly through the interior, intermediate layer and thermal 
layer. A first integral of (A 8), similar to (3.47), can be obtained. It is 

The contribution to the right-hand side of (2 .22)  is approximately 

aw 
/ow'( W2 + a4/NB) (W2 - -log [( W 2  + a4/NR)/( W% + a4/NR)]}4' 

In  view of the fact that a4/NR is small, it  is apparent that a major contribution 
to (A 10) comes from the range of integration in which W is small and O(a2INR). 
Its contribution may be evaluated by changing the variable of integration to 
q = OI-~W(NR)*, and evaluating the following approximation to  the integral: 

= 2aT~* 

(A 10) 

Expression (A 11) agrees with (3.69). It dominates the contribution of the 
remainder of (A lo), except perhaps for that of the region near the upper limit 
when Wo+ 1. The contribution of the latter may be estimated as a 4 ,  in the same 
manner as before. 



454 C. Hunter and N .  Riahi 

R E F E R E N C E S  

BUSSE, I?. H. 1969 J .  Fluid Mech. 37, 457. 
BUSSE, F. H. & JOSEPH, D. D. 1972 J .  Fluid Mech. 54, 521. 
CB", S. K. 1971 Stdies k Appl. Math. 50, 13. 
C w ,  S. K. 1974 J .  Fluid Mech. 64, 477. 
CECANDRASEKHAR, S. 196 1 Hydrodynamic and Hydromagnetic Stability. Oxford University 

Press. 
ELDER, J. W. 1969 J .  Fluid Mech. 35, 417. 
GLANSDORFF, P. & PRICIOGINE, I. 1964 Physica, 30, 351. 
GOUGE, D. O.,  SPIEQEL, E. A. & TOOMRE, J. 1975 J .  Fluid Mech. 68, 696. 
GUPTA, V. P. & JOSEPE, D. D. 1973 J .  Fluid Mech. 57, 491. 
HERRING, J. R. 1963 J .  Atmos. Sci. 20, 325. 
HOWARD, L. N. 1963 J .  Fluid Mech. 17, 405. 
MALKUS, W. V. R. 1954 Proc. Roy. SOC. A 225, 196. 
MORGAN, J. C. 1973 J .  Fluid Mech. 57, 433. 
NIILER, P. P. & BISSHOPP, F.  E.  1965 J .  Fluid Mech. 22, 753. 
ROBERTS, P. H. 1966 In Non-equilibrium Themodynamics : Variatiolzal Technaqusu and 

Stability (4. R. J. Donnelley, R. Herman and I. Prigogine). University of Chicago 
Press. 

ROSSBY, H. T. 1969 J .  Fluid Mech. 36, 309. 
SOMERVILLE, R.  C. J. 1971 Geophys. Flwid Dyn. 2, 247, 
SOMERVILLE, It. C. J. & LIPPS F. B. 1973 J .  Atmos. Sci. 30, 590. 
VAN DER BORGHT, R. & MURPHY, J. 0. 1973 Aust. J .  Phys. 26, 341. 
VERONIS, G. 1968 J .  Fluid. Mech 31, 113. 


